Low Reynolds Number Swimming Near Interfaces in Multi-Fluid Media

نویسندگان

چکیده

Microorganisms often swim within heterogeneous fluid media composed of multiple materials with very different properties. The swimming speed is greatly affected by the composition and rheology fluidic environment. In addition, biological locomotions are also strongly influenced presence phase boundaries free interfaces, across which physical properties may vary significantly. Using a two-fluid immersed boundary method, we investigate classical Taylor’s sheet problem near interfaces multi-fluid media. accuracy methodology illustrated through comparisons analytical solutions. Our simulation results indicate that interface dynamics separation in mixture closely coupled movement swimmer. Depending on location, frictional coefficient, composition, swimmer can move faster or slower than single fluid.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soft swimming: exploiting deformable interfaces for low reynolds number locomotion.

Reciprocal movement cannot be used for locomotion at low Reynolds number in an infinite fluid or near a rigid surface. Here we show that this limitation is relaxed for a body performing reciprocal motions near a deformable interface. Using physical arguments and scaling relationships, we show that the nonlinearities arising from reciprocal flow-induced interfacial deformation rectify the period...

متن کامل

Passive swimming in low-Reynolds-number flows.

The possibility of microscopic swimming by extraction of energy from an external flow is discussed, focusing on the migration of a simple trimer across a linear shear flow. The geometric properties of swimming, together with the possible generalization to the case of a vesicle, are analyzed. The mechanism of energy extraction from the flow appears to be the generalization to a discrete swimmer ...

متن کامل

Low-Reynolds-number swimming at pycnoclines.

Microorganisms play pivotal functions in the trophic dynamics and biogeochemistry of aquatic ecosystems. Their concentrations and activities often peak at localized hotspots, an important example of which are pycnoclines, where water density increases sharply with depth due to gradients in temperature or salinity. At pycnoclines organisms are exposed to different environmental conditions compar...

متن کامل

Quiet swimming at low Reynolds number.

The stresslet provides a simple model of the flow created by a small, freely swimming and neutrally buoyant aquatic organism and shows that the far field fluid disturbance created by such an organism in general decays as one over distance squared. Here we discuss a quieter swimming mode that eliminates the stresslet component of the flow and leads to a faster spatial decay of the fluid disturba...

متن کامل

Effective swimming strategies in low Reynolds number flows

The optimal strategy for a microscopic swimmer to migrate across a linear shear flow is discussed. The two cases, in which the swimmer is located at large distance, and in the proximity of a solid wall, are taken into account. It is shown that migration can be achieved by means of a combination of sailing through the flow and swimming, where the swimming strokes are induced by the external flow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2021

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app11199109